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Phonon transport in large scale carbon-based disordered materials: Implementation of an
efficient order-N and real-space Kubo methodology
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We have developed an efficient order-N real-space Kubo approach for the calculation of the phonon con-
ductivity which outperforms state-of-the-art alternative implementations based on the Green’s function formal-
ism. The method treats efficiently the time-dependent propagation of phonon wave packets in real space, and
this dynamics is related to the calculation of the thermal conductance. Without loss of generality, we validate
the accuracy of the method by comparing the calculated phonon mean free paths in disordered carbon nano-
tubes (isotope impurities) with other approaches, and further illustrate its upscalability by exploring the thermal
conductance features in large width edge-disordered graphene nanoribbons (up to ~20 nm), which is out of
the reach of more conventional techniques. We show that edge disorder is the most important scattering
mechanism for phonons in graphene nanoribbons with realistic sizes and thermal conductance can be reduced

by a factor of ~10.
DOI: 10.1103/PhysRevB.82.041410

I. INTRODUCTION

In recent years, the understanding of phonon transport in
carbon-based materials such as carbon nanotubes (CNTSs)
(Ref. 1) and graphene-based materials® has become particu-
larly important, both for fundamental studies of coherent
transport and also in view of novel applications. The thermal
conductivity of suspended and supported single graphene
layers has been found to be extremely high®* owing to mi-
crometer long phonon mean free paths (MFP). Such high
thermal conductivity of two-dimensional graphene increases
its potential for faster nanoelectronic devices with less en-
ergy dissipation.’ On the other hand, damaging a material
like graphene could present interesting opportunities like
achieving a high thermoelectric figure of merit and observa-
tion of Anderson localization of phonons. The question
whether or not Anderson localization of acoustic phonons
can be demonstrated unambiguously in disordered materials
has been a long-standing problem in phonon physics, a phe-
nomenon originating from the interference between multiple
scattering paths was found ubiquitous in wave physics.%’
Besides, disordered CNT-based bundles have been found to
exhibit a tendency toward a thermal insulating regime.®’
Also, isotope disorder was shown to strongly impact on the
high-energy phonon modes, resulting in very low mean free
paths, in marked contrast with the genuine robustness of bal-
listic conduction for low-energy phonon modes.'” As a re-
sult, the contribution of quantum localization effects of high-
energy modes was found to be important but completely
masked when considering the thermal conductance of the
disordered material (being an integrated quantity over the
entire phonon spectrum). Graphene nanoribbons (GNRs) of-
fer an alternative to carbon nanotubes. By constructing het-
erostructures from pristine graphene mixed with disordered
(isotope impurities) GNRs,!! or selective coverage of hydro-
gen impurities,'? it is possible to tune the resulting phonon
transport capability. Another important source of disorder is
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provided by unavoidable ribbon-edge irregularities, absent in
CNTs which have already been shown to significantly reduce
thermal conductance in small width GNRs.!314

Exploring such possibilities, however, demand the devel-
opment of efficient computational approaches which are able
to tackle large scale (and realistic) simulations of material of
interest. The Green’s function (GF) methods are able to in-
corporate microscopic details of the system, but they require
matrix inversions which unavoidably limit the accessible size
of the simulated systems. For the case of GNRs, although the
system length can be upscaled without difficulty thanks to
the decimation procedure, the computational cost becomes
prohibitive for lateral sizes above 10 nm.'%!3

In this Rapid Communication, using the real-space Kubo
(RSK) formalism we first demonstrate that a time-dependent
phonon wave packet formalism can be connected to the cal-
culation of the thermal conductance. After validating this nu-
merical approach by comparing the obtained phonon MFP in
disordered CNTs (with isotope impurities) with previously
computed ones by means of GF-based method,'? we apply
the new algorithm to large width GNRs and focus on the
impact of edge-disorder profiles. Scaling properties of pho-
non MFP and temperature-dependent thermal conductance
are calculated as a function of edge-disorder strength and for
lateral ribbon sizes accessible to today’s state-of-the-art li-
thography. The broad generality of this method could offer a
novel framework to explore other types of complex materi-
als.

II. COMPUTATIONAL PHONON TRANSPORT
METHODOLOGY

To investigate bulk quantum phonon transport in disor-
dered materials, the use of the Kubo formalism turns out to
be the most natural and computationally efficient one. It has
already been used for investigating thermal transport in dis-
ordered binary alloys or nanocrystralline silicon.'>!¢ Simi-
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larly, many efforts have been made to explore time-
dependent features of propagating phonon (or polaron) wave
packets in complex quantum systems.!” Here a real-space
implementation of the Kubo formula for phonon propagation
is given, establishing a direct computational bridge between
phonon dynamics and the thermal conductance. In compari-
son to the previous methods, we extract the dynamical infor-
mation from time evolution of the wave packet'® and simu-
late Hamiltonian dynamics in place of Newtonian equations
of motion,'® so that only one initial condition is required, i.e.,
the initial atomic displacements, and one does not need to
calculate the atomic velocities in time. Additionally, by using
the Lanczos technique which avoids any matrix inversion, a
considerable computational efficiency gain is obtained, al-
lowing the study of very large-scale materials. The starting
Hamiltonian which describes the phonon spectrum, taking
only the harmonic interactions into account, is of the form

H=> L v D, (1)

where ii; and p; are the displacement and momentum opera-
tors for the ith degree of freedom, M; is the corresponding
mass, and ® is the force constant tensor. Based on the linear-
response theory, the phonon conductivity o can be defined as
QT [BdN[5dr(J*(=ihN)J*(2)).'6 J* is the x component of the
energy flux operator J, and it can be expressed as 7
=1/20%,(X;=X;)®;ii;0;, where 0; is the velocity operator
and X; is the equlhbrlum position of the atom to which the
ith degree of freedom belongs. After some algebra, o be-
comes

o=— (—7; fo dwhw‘;—’;?Tr{[X,D] S(w* = D)[X,D]8(w* D)},

(2)

where is the Bose distribution function and D;;
=®;;/\M;M; is the mass-normalized dynam1cal matrix, Tr
denotes the trace of the matrix, and 8(w?—D) is the Dirac-
delta operator. The dynamical matrix can be obtained given
the atomistic configuration of the system and it defines a
Newtonian equation of motion which is of second order in
time. Using the fact that the operators D and H have the

spectrum  (A?D=H?)
=[)A( ,H]/if, one can write the thermal conductance of a one-
dimensional system as

same energy and defining Vx

K—_f dwﬁw—Tr{V hw-— H)V Shw-H)}. (3)

The thermal conductance can also be derived from the Lan-
dauer formalism'® or the nonequilibrium Green’s function
approach?® as

dwﬁa)ﬁ’]'(w) (4)

with 7T{w) being the phonon transmission function. Compar-
ing the two formulas, the transmission function is defined as
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f TV, 8(how - H)V 8hw-H)},  (5)

T(w) =

which has the same form as the electron transmission func-
tion derived from the Kubo-Greenwood formula,?!

20K . .
T,(E) = TTr{V,ﬁ(E -H,)V.8E-H,)}.  (6)

This equivalence allows us to implement an order-N algo-
rithm related to the Lanczos method, which has been suc-
cessfully applied to electron conduction in complex
materials.?! The Lanczos method has been previously em-
ployed in the past for calculating the vibrational density of
states of disordered systems.?? The starting point of the RSK
method is the transmission function as expressed in Eq. (6).
One can rewrite 7(w) in terms of the diffusion coefficient,

Tlo) = 2536 - Dlim S (D), (1)

where the diffusion coefficient D has the form

1 Tr{(X() - X(0))* 8w’ - D)}

Dlat)=7 Tr{&w? - D)} : ®)

where X (¢) is the position operator in the Heisenberg picture.
In the diffusive regime D(w,1)=D,,«(w), so that the trans-
mission function reduces to

Ta) = 25T = DI}, 9)

where in the ballistic regime D(w, ) =v?*(w)t with v(w) being
the average group velocity over states with frequency w.
Since the number of channels is N, (w)=~2wm Tr{&w?
-D)}v(w)/L, the phonon mean free path can be
approximated by €(w)=Dy(w)/v(w). By computing
D(w,1), one can thus deduce D, (w) and v(w) and €(w).
Note that the numerator in Eq. (8) can be rewritten as
Tr{[X,U()]"8(w?*-D)[X,U(r)]} and approximated by
Tr{[X,U(7)] (w?-D)[X,U(7)]} to the first order in
perturbation theory with U(7)=¢™P™ and 7=t/2w. The trace
can be efficiently calculated through an average over a few
random phase states of atomic displacements as
NCY[X,U(7)]"8(w?>~D)[X,U(7)]|1h), N being the number of
degrees of freedom and the bra-ket corresponds to the local
density of states (LDOS) associated with the vector
[X,U(7)]|) which is calculated by using Chebyshev expan-
sion of U(7). LDOS is obtained by using the Lanczos method
and Tr{8(w?—D)} is also calculated by averaging the LDOS
of |¢4) through the Lanczos method.

III. RESULTS

As a test case, we first consider a CNT(7,0) with 10.7%
¢ impurities, which was studied in Ref. 10 using the GF
method. From the saturation values of the time-dependent
diffusion coefficients, we obtain the phonon MFP using the
RSK scheme which compares very well with those obtained
from the GF method.”
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PHONON TRANSPORT IN LARGE SCALE CARBON-BASED...

FIG. 1. (Color online) A short portion of an edge-disordered
ZGNR with width w=17.04 nm, length L~50 nm, and disorder
density of 10%. In the calculation, the length of ZGNR is chosen to
be 983.80 nm and periodic boundary condition is employed.

Next, we consider zigzag graphene nanoribbons (ZGNR)
of different widths with edge disorder. We use the fourth-
nearest-neighbor force constants for building the dynamical
matrices.”* The ribbon widths are defined with the number of
zigzag chains N,=20, 40, and 80, and the relative amount of
edge defects (removed carbon atoms at the edges) is chosen
to be 10%, and additionally 15% for N,=80 (Fig. 1). The
inset of Fig. 2 displays the evolution of the wave packet
dynamics for different frequencies for ZGNR(80) with 10%
edge disorder. The linear increase in D(w, ) at >0 indicates
ballistic transport at relatively short distances whereas the
decrease in D(w,?) is a signature of localization for this par-
ticular frequency. The fact that D decreases slowly suggests
the localization length is large. The saturation of D(w,?) to a
maximum value characterizes diffusive transport [cf. Eq.
(9)]. In Fig. 2, the decay of €(w) with decreasing the ribbon
width is shown at a fixed disorder strength. This behavior
can be rationalized with the fact that the scattering rate de-
creases with increasing width, a behavior previously derived
for electron transport in both disordered CNTs and GNRs.?
One notes that, for low-frequency modes, the MFP are sev-
eral hundreds of nanometer, and due to large values of N,
the possibility to observe any onset of Anderson localization
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FIG. 2. (Color online) Elastic MFP for ZGNR of widths N,
=20, 40, and 80 (4.26 nm, 8.52 nm, and 17.04 nm, respectively)
with disorder density of 10%, and also for the N,=80 and 15%
disorder for comparison. Inset: time-dependent diffusion coeffi-
cients D(w,?) for three chosen frequencies. The same calculation
time corresponds to different evolution time for different
frequencies.
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FIG. 3. (Color online) Transmission spectra for different lengths
of ZGNR(80) with edge disorder of 10% (solid) and 15% (dashed).

is jeopardized in the thermal conductance, as previously dis-
cussed for small diameter disordered carbon nanotubes.'® We
then focus on ZGNR(80) and obtain the transmission accord-
ing to 7{w)=Ng,/[1+L/€(w)], assuming a diffusive regime,
disregarding quantum interference effects and assuming
minimum contact resistances. The resulting frequency-
dependent transmission function 7{w) for different ribbon
lengths is plotted in Fig. 3 while the thermal conductance «
using Eq. (4) is shown in Fig. 4. The downscaling of 7{w)
directly impacts on x which is found to be reduced by one
order of magnitude for 2 um (at room temperature) com-
pared with the ballistic case. Note that the calculation time
directly determines the largest 7 that we can reach, the same
7 corresponds to different evolution time for different fre-
quencies, since 7=t/2w. It takes longer calculation time for
low-frequency phonons to reach D,,. Here for w
<70 cm™!, D,,,, has not been reached within the finite cal-
culation time. To compute the contribution of these modes to
K, a linear extrapolation for the transmission is used and the
results are compared with those obtained from the GF
method. Our analysis shows that this approximation causes
an error of less than 1.5% for the thermal conductance at
room temperature. The conductivity of edge-disordered
GNRs is obtained using o=«L/A, A being the cross-section
area of the ribbons which is taken as the interplane distance
of graphite layers. At room temperature, O
=1004 W m™' K~ ! and 0=757 Wm™' K~! with edge disor-
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FIG. 4. (Color online) Temperature- and length-dependent be-
haviors of the ZGNR(80) thermal conductance, 10% disorder (solid
lines), 15% (dashed lines).
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der 10% and 15%, respectively for L=2 um. Comparing
these values with the experimental values for suspended?
(3000-5000 Wm~' K~!) and supported* (600 W m~! K1)
graphene, we conclude that edge disorder is a very important
source of scatterings not only in ultranarrow ribbons but also
in GNRs as wide as at least 20 nm. A comparison of our
results with that of Ref. 13 suggests that the effect of edge
disorder is reduced when increasing the width from 2 to 20
nm although it still plays an important role for large lateral
sizes. The ratio of edge atoms affected from edge reconstruc-
tions to the total number of atoms decay inversely with the
width of the GNR,'* therefore edge profile disorder predomi-
nates over reconstruction effects with increased ribbon
width.

IV. CONCLUSION

A real space and order-N approach to compute the phonon
wave packet propagation and the thermal conductance has
been reported. Diffusion coefficients and MFPs can be ex-
tracted directly from the wave packet propagation. Its com-
putational accuracy and efficiency were demonstrated on dis-
ordered carbon nanotubes and large width graphene
nanoribbons, respectively. A strong impact of smooth edge
disorder on the thermal conductance was found. Unlike edge
reconstruction,'* edge disorder strongly suppresses thermal
conduction not only for ultranarrow GNRs but also for real-
istically large ribbons. Phonons in edge-disordered GNRs,
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being scattering so effectively, pinpoints toward good ther-
moelectric properties of large width GNRs. The applicability
of this new method goes far beyond quasi-one-dimensional
systems and the area of carbon-based materials (nanotubes,
graphene, etc.) studied here and could be applied without
difficulty to a wide range of other materials, including
Boron-nitride-based materials?® or silicon-based materials
(nanowires, superlattices, etc.).’
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